2-year Automation International Student Industry-Academia Collaboration Program Spring 2019 Course Outlines

Course Titles	Description/ Outline	Credits	Hours
Electric Machinery	1. Electromechanical fundamentals	3	3
	2. Dynamo construction and winding		
	3. DC dynamo voltage relations-dc generators		
	4. DC dynamo yorque relations-dc motors		
	5. Armature reaction and commutation in dynamos		
	6. AC dynamo voltage relations-alternators		
	7. Paraller operation		
	8. AC dynamo torqure relations-synchronous motors		
	9. Polyphase induction dynamos		
	10. Single-phase motors		
	11. Specialized dynamos		
	12. Transformers		
	1. Introduction	3	3
	2. Mathematical Foundation		
Automatic Control	3. Block Diagrams and Signal-Flow Graphs		
Systems Systems	4. Mathematical Modeling of Physical Systems		
	5. Stability of Linear Control Systems		
	6. Time-Domain Analysis of Control Systems		
	7. Root-Locus Technique		
	In this course, students will work on building vocabulary		2
Elementary Mandarin Conversation(1B)	and listening skills in exercises relevant to the daily life		
	topic. Various kinds of activities are conducted to	2	
	enhance learners' listening and speaking abilities. The		
	course would be helpful for students to get used to living		
	in Taiwan by practicing pronunciation and Mandarin		
	grammar. Furthermore, students can learn to recognize		
	some Chinese characters and to know part of Taiwan		
	culture as well. Course design will be subject to change		
	according to learners' level and situation.		
Programmable Logic	1. General Rule of Application Instruction	2	4
Controller Applications and	2. Explanation and Experience of Application		
Practice	Instruction		

	3. Program Design and Implementation of PLC		
	4. Application of Special Function Module		
	5. Control of Phenumatics and Hydrolics using PLC		
	6. Graphic Monitoring of PLC		
Workplace English	This course gives students the language they need for real		
	life, hands-on tasks like describing a problem, giving		
	instructions, discussing logistics, or explaining	3	3
	procedures. From maintenance to customer service, and	3	3
	from manufacturing to technical support, the focus is		
	always on getting the job done.		
Dynamics	1. Kinematics of particles	3	3
	2. Kinetics of particles: Force and Acceleration		
	3. Kinetics of particles: Work and Energy		
	4. Kinetics of particles: Impulse and Momentum		
	5. Kinematics of rigid body in plane motion		
Mechatronics Practice	1. Introduction of Mechatronics	2	4
	2. Some basic Mechatronics components		
	3. The circuits formed by Mechatronics components		
	4. 4~8th week Simple serial and parallel control circuits		
	5. The first exam		
	6. Sensors and applications		
	7. The second exam		
	8. PLC and ladder diagrams		
	9. Practices on PLC applications		
	10. The final exam		
Microprocessor	1. Basic concept	2	4
Practice	2. Memory structure		
Practice	3. Instruction set		
	4. Input/Output		
	5. Interrupt structure		
	6. Timer		
	7. A/D converter		
	8. CCP		
	9. WDT		
1	10. Application experiment		